public class WekaOptionHelper extends Object
Constructor and Description |
---|
WekaOptionHelper() |
Modifier and Type | Method and Description |
---|---|
static String[] |
getAdaBoostOptions(HashMap params)
Generate option string for Adaboost M1
|
static String[] |
getBaggingOptions(HashMap params)
Generate option string for Bagging
|
static String[] |
getBayesNetOptions(HashMap params)
Generate option string for BayesNet
|
static String |
getBooleanParam(Object value,
String option,
Object trueReference)
Option-string helper method for WEKA boolean options
WekaUtils.getBooleanParam("true", "R", true) => " -R "
WekaUtils.getBooleanParam("false", "X", false) => " -X "
WekaUtils.getBooleanParam(1, "H", 1) => " -H "
WekaUtils.getBooleanParam(1, "X", 0) => ""
|
static String[] |
getClassifierOptions(String classifier,
HashMap params) |
static String[] |
getClustererOptions(String clusterer,
HashMap params) |
static String[] |
getEMOptions(HashMap params) |
static String[] |
getGaussianProcessesOptions(HashMap params)
Generate option string for Gaussian Processes
|
static String[] |
getHierarchicalClustererOptions(HashMap params) |
static String[] |
getIBkOptions(HashMap params)
Generate option string for IBk
|
static String[] |
getJ48Options(HashMap params)
Generate option string for J48
|
static String[] |
getLibSVMOptions(HashMap params)
Generate option string for LibSVM
|
static String[] |
getLogisticOptions(HashMap params)
Generate option string for Logistic
|
static String[] |
getLROptions(HashMap params)
Generate option string for Linear Regression
|
static String[] |
getM5POptions(HashMap params)
Generate option string for M5P
|
static String[] |
getM5RuleOptions(HashMap params)
Generate option string for M5Rule
|
static String[] |
getMultilayerPerceptronOptions(HashMap params)
Generate option string for MultilayerPerceptron
|
static String[] |
getNaiveBayesOptions(HashMap params) |
static String |
getParamString(Object value,
String option,
Object defaultValue)
Option-string helper method for WEKA options build from option, value and defaultValue.
|
static String[] |
getRandomForestOptions(HashMap params)
Generate option string for RandomForest
|
static String[] |
getSimpleKMeansOptions(HashMap params) |
static String[] |
getSMOOptions(HashMap params)
Generate option string for SMO
|
static String[] |
getSMOregOptions(HashMap params)
Generate option string for SMO
|
static String[] |
splitOptions(String parameters)
Split parameter string with weka.core.Utils.splitOptions method
|
public static String[] getJ48Options(HashMap params)
params
- HashMap: binarySplits, confidenceFactor, minNumObj, numFolds, reducedErrorPruning, seed, subtreeRaising, unpruned, useLaplacepublic static String[] getIBkOptions(HashMap params)
params
- HashMap: windowSize, IBk, crossValidate, distanceWeighting, meanSquared, nearestNeighbourSearchAlgorithmpublic static String[] getBayesNetOptions(HashMap params)
params
- HashMap: estimator, estimatorParams, useADTree, searchAlgorithm, searchParamspublic static String[] getGaussianProcessesOptions(HashMap params)
params
- HashMappublic static String[] getLibSVMOptions(HashMap params)
params
- HashMap: svmType, coef0, cost, degree, eps, gamma, kernelType, loss, normalize, nu, probabilityEstimates, shrinking, weightspublic static String[] getLogisticOptions(HashMap params)
params
- HashMappublic static String[] getLROptions(HashMap params)
params
- HashMap: attributeSelectionMethod, eliminateColinearAttributes, ridgepublic static String[] getM5POptions(HashMap params)
params
- HashMappublic static String[] getM5RuleOptions(HashMap params)
params
- HashMap: unpruned, useUnsmoothed, minNumInstances, buildRegressionTreepublic static String[] getMultilayerPerceptronOptions(HashMap params)
params
- HashMappublic static String[] getRandomForestOptions(HashMap params)
params
- HashMappublic static String[] getSMOOptions(HashMap params)
params
- HashMappublic static String[] getSMOregOptions(HashMap params)
params
- HashMappublic static String[] getAdaBoostOptions(HashMap params)
params
- HashMap: batchSize, numIterations, useResampling, weightThresholdpublic static String[] getBaggingOptions(HashMap params)
params
- HashMap: bagSizePercent, batchSize, numIterationspublic static String getParamString(Object value, String option, Object defaultValue)
WekaUtils.getParamString(100, "R", 2) => " -R 100 "
WekaUtils.getParamString(null, "H", 2) => " -H 2 "
WekaUtils.getParamString(null, "X", null) => " -X "
value
- value of the optionoption
- option to setdefaultValue
- default value is set when value is nullpublic static String getBooleanParam(Object value, String option, Object trueReference)
WekaUtils.getBooleanParam("true", "R", true) => " -R "
WekaUtils.getBooleanParam("false", "X", false) => " -X "
WekaUtils.getBooleanParam(1, "H", 1) => " -H "
WekaUtils.getBooleanParam(1, "X", 0) => ""
value
- value of the boolean option, e.g.: 1, true, -1option
- option to settrueReference
- to be compared with valuepublic static String[] splitOptions(String parameters)
parameters
- parameter string to split to String[]public static String[] getHierarchicalClustererOptions(HashMap params)
Copyright © 2018. All rights reserved.